CONTENTS

Automation

Vijaynt Agarwal and Alok Prakash Mittal
Mathematical Modeling of Machine Learning technique for the Solution of inverse harmonic non-linear equations

Computer Science

Domokos József and Toderean Gavrili
Continuous Speech Phoneme Recognition Using Dynamic Artificial Neural Networks

Béla Genge and Iosif Ignat
Syntactic Sequential Composition of Security Protocols

Mathematics

Ana Maria Acu and Florin Sofonea
Monosplines and Quadrature Formulas

Octavian Agratini and Saddika Tarabie
On Approximating Operators Preserving Certain Polynomials

Francisco Aguilera, Daniel Cárdenas-Morales, Pedro Garrancho and Juan María Hernández
Quantitative Results in Conservative Approximation and Summability

Dorin Andrica and Ioana-Claudia Lazar
Discrete Morse Theory and Curvature Properties of Simplicial Complexes

Lucia Rodica Blaga, Liana Lupşa and Luciana Neamţiu
Model of a Dynamic Lexicographic Bi-criteria Transport Problems

Eugen Drăghici
Inequalities and Subclasses of Analytic Functions in the Complex Unit Disc

Adrian Holhos
The Rate of Convergence of Positive Linear Operators in Weighted Spaces

Daniela Inoan
Some Remarks on Several Pseudomonotonicity Notions in the Context of Variational Inequalities

Mircea Ivan
On the Iterates of Some Positive Linear Operators

Zoltán Makó and Ferenc Szenkovits
Connections Between the Weak Stability Boundary and the Capture Effect in the Elliptic Restricted Three Body Problem

Vasile Miheșan
On a General Class of Beta Approximating Operators of First Kind

Dorel Mihet
The Stability of the Jensen Functional Equation in Non-Archimedean Fuzzy Normed Spaces

Alexandru I. Mitrea
Double Condensation of Singularities for Interpolating Operators Associated to the Sturm-Liouville Node Matrix

Ion Marian Olaru
Differentiability with Respect to Parameter for the Solution of Kalecki’s Model

Ioan Rasa
A Family of Sequences

Dania Rosca
A Class of Orthogonal Matrices of Dimension Four

Mircea Dan Rus
Positive Solutions for Singular Nonlinear Second-order Boundary-value Problems Via Mixed Monotone Iterative Technique

Marcel-Adrian Şerban
Spaces with Perturbed Metrics and Fixed Point Theorems

Alina Sîntămărian
A Representation and a Sequence Transformation Regarding a Generalization of Euler’s Constant

Ştefan V. Ştefănescu
Estimating the Parameters of a Circular Area

147
159
179
181
191
201
209
211
221
229
239
247
255
259
267
283
293
299
305
309
317
323
335
345
Mathematical Modeling of Machine Learning technique for the Solution of inverse harmonic non-linear equations

Vijaynt Agarwal and Alok Prakash Mittal

Vijaynt Agarwal: Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India
vijayantonly@yahoo.com

Alok Prakash Mittal: Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India
mittalap@yahoo.com

ABSTRACT: This article proposed a new method based on the clustering technique of artificial intelligence for the inverse solution of harmonic non-linear equations. In order to understand the proposed algorithm and to show the performance, simulation study of inverse equations which is highly non-linear involving transcendental (harmonic sine and cosine) are illustrated with reference to the problems of finding association rules in the data, and of setting up appropriate classification procedures.

KEY WORDS: non-linear equations, inverse jacobian matrix, singularity, AI, clustering

RECEIVED: July 1, 2008
Continuous Speech Phoneme Recognition Using Dynamic Artificial Neural Networks

DOMOKOS JÓZSEF AND TODEREAN GAVRIL

Domokos József: • Sapientia University, Electrical Engineering Department, 540485, Corunca, Ţocea Sighişoarei no. 1/C, O.P. 9, C.P. 4
•• Technical University of Cluj-Napoca, Communications department, Str. Gh. Bariţiu 26-28
400027, Cluj-Napoca,
jdomokos@com.utcluj.ro

Toderean Gavril: Technical University of Cluj-Napoca, Communications department, Str. Gh. Bariţiu 26-28
400027, Cluj-Napoca,
toderean@pro3soft.ro

Abstract: Phoneme classification and recognition is the first step to large vocabulary continuous speech recognition. This step represents the acoustic modeling part of such a system. In hybrid speech recognition systems phoneme recognition is made by artificial neural networks (ANN’s). The main objective of this paper is the investigation of dynamic ANN’s, namely the Time-Delay Neural Networks (TDNN) and Recurrent Neural Networks (RNN) - that are the most suitable for recognition of time sequences. There are presented two types of TDDN’s: Focused Time-Delay Neural Networks (FTDNN) and Distributed Time-Delay Neural Networks (DTDNN) respectively and a Layer Recurrent Neural Network (LRNN). The development of a phoneme recognizer application using dynamic ANN’s for OASIS Numbers databases is also described. There are also presented the phoneme classification experiments and the results for the ANN’s. Finally some conclusions are drawn based on the experimental results.

Key Words: continuous speech recognition, phoneme classification, dynamic neural networks, OASIS Numbers

Received: September 25, 2008
Syntactic Sequential Composition of Security Protocols

BÉLA GENGE AND IOSIF IGNAT

Béla Genge: “Petru Maior” University of Târgu Mureș, Department of Electrical Engineering, N. Iorga Str., No. 1, (4300) Târgu Mureș, ROMANIA
bgenge@upm.ro

Iosif Ignat: Technical University of Cluj-Napoca, Department of Computer Science, Baritiu Str., No. 28, (3400) Cluj-Napoca, ROMANIA
Iosif.Ignat@cs.utcluj.ro

Abstract: Determining if two protocols can be securely composed requires analyzing not only their additive properties but also their destructive properties. In this paper we construct an enriched protocol model for analyzing instance-related properties and a canonical model for analyzing message structure-related properties. The protocol model provides for each participant the preconditions needed to run the protocol, the effects resulted from running the protocol, the generated message components and the transmitted and received message sequences. The canonical model integrates participant knowledge in the model reducing each message component to its basic type. This allows us to conduct a syntactical analysis on the canonical model and to detect multi-protocol attacks that can be constructed by attackers in case of composed protocols. The proposed method ensures the sequential composition of protocols with the satisfaction of preconditions and non-destructive effects.

Key Words: Security protocols, sequential composition, syntactic model verification.

MSC 2000: 68M12, 68Q60

Received: November 11, 2008
Monosplines and Quadrature Formulas

ANA MARIA ACU AND FLORIN SOFONEA

Ana Maria Acu: Lucian Blaga University, Department of Mathematics, Str. Dr.I.Rațiu, No.5-7, 550012 - Sibiu, Romania, acuana77@yahoo.com
Florin Sofonea: Lucian Blaga University, Department of Mathematics, Str. Dr.I.Rațiu, No.5-7, 550012 - Sibiu, Romania, sofoneaflorin@yahoo.com

ABSTRACT: In this paper we studied a class of quadrature formulas, with the weight function

\[w : [a, b] \rightarrow \mathbb{R}, \quad w(t) = (b - t)^\nu(t - a)^\nu, \quad \nu \in \mathbb{N}, \]

obtained by using the connection between the generalized monosplines and the quadrature formulas. For smooth functions we give some inequalities for the remainder term.

KEY WORDS: quadrature rule, numerical integration, error bounds

MSC 2000: 26D15, 65D30

RECEIVED: July 1, 2008
On Approximating Operators Preserving Certain Polynomials

OCTAVIAN AGRATINI AND SADDIKA TARABIE

Octavian Agratini: Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
agratini@math.ubbcluj.ro

Saddika Tarabie: Faculty of Sciences, Tishrin University, 1267 Latakia, Syria
sadikatorbey@yahoo.com

ABSTRACT: The paper centers around a general class of discrete linear positive operators depending on a real parameter $\alpha \geq 0$ and preserving both the constants and the polynomial $x^2 + \alpha x$. Under some given conditions, this sequence of operators forms an approximation process for certain real valued functions defined on an interval J. Two cases are investigated: $J = [0,1]$ and $J = [0, \infty)$, respectively. Quantitative estimates are proved in different normed spaces and some particular cases are presented.

KEY WORDS: positive linear operators, Popoviciu-Bohman-Korovkin criterion, Bernstein polynomials, Szász-Mirakjan operators, Baskakov operators, polynomial weight spaces

MSC 2000: 41A36, 41A25

RECEIVED: Oct 28 2008
Quantitative Results in Conservative Approximation and Summability

FRANCISCO AGUILERA, DANIEL CÁRDENAS-MORALES, PEDRO GARRANCHO AND JUAN MARÍA HERNÁNDEZ

Francisco Aguilera: Departamento de Matemáticas. I.E.S. Virgen del Carmen. 23008 Jaén (Spain)
pacoaguilera@iesvirgendelcarmen.com
Daniel Cárdenas-Morales: Departamento de Matemáticas. Universidad de Jaén. Campus Las Lagunillas, 23071 Jaén (Spain) cardenas@ujaen.es
Pedro Garrancho: Departamento de Matemáticas. Universidad de Jaén. Campus Las Lagunillas, 23071 Jaén (Spain) pgarran@ujaen.es
Juan María Hernández: Departamento de Métodos Cuantitativos en Economía y Gestión. Universidad de Las Palmas de Gran Canaria. C/ Saulo Torón, 35107 Las Palmas (Spain) jhernandez@dmc.ulpgc.es

ABSTRACT: The classical Bohmann-Korovkin theorem and the subsequent quantitative version on the convergence of a sequence of positive linear operators were formulated replacing the usual convergence by the notion of almost convergence introduced by G.G. Lorentz. Later on the results were unified through the use of the summability method introduced by H.T. Bell. Our aim with this work is to present quantitative results on matrix summability for certain conservative, non necessarily positive, approximation processes.

KEY WORDS: matrix summability methods, linear operators, simultaneous approximation

MSC 2000: 40C05, 41A25, 41A28, 41A36

RECEIVED: Nov 1, 2008

* This work is partially supported by Junta de Andalucía (FQM-0178) and by Ministerio de Ciencia y Tecnología (MTM 2006-14590)
Discrete Morse Theory and Curvature Properties of Simplicial Complexes

DORIN ANDRICA AND IOANA-CLAUDIA LAZĂR

Dorin Andrica: "Babeș-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
dandrica@math.ubbcluj.ro
Ioana-Claudia Lazăr: "Babeș-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
ioanastan03@yahoo.com

ABSTRACT: We present a combinatorial version to the classical Hadamard’s theorem which states any complete, simple connected, nonpositively curved Riemannian manifold is contractible.

KEY WORDS: finite simplicial complex, combinatorial distance, geodesic triangle, $CAT(0)$ space, $CAT(0)$ inequality, discrete Morse function, Hadamard’s theorem

MSC 2000: 53C21

RECEIVED: Nov 26, 2008

The authors were partially supported by CNCSIS Grant No.1467/2007.
Model of a Dynamic Lexicographic Bi-criteria Transport Problems

LUCIA RODICA BLAGA, LIANA LUPŞA AND LUCIANA NEAMŢIU

Liana Lupşa: Babeş-Bolyai University, Faculty of Mathematics and Computer Science, str. M. Kogălniceanu nr. 1, Ro-400084 Cluj-Napoca, România
llupsa@math.ubbcluj.ro

Lucia Rodica Blaga: Technical University, str. C. Daicoviciu nr. 15, Ro-400020, Cluj-Napoca, România
lucia.blaga@math.utcluj.ro

Luciana Neamţiu: Oncological Institute ”Ion Chiricuşă”, str. Republicii nr. 34-36, Ro-400015 Cluj-Napoca, România
luciana@iocn.ro

ABSTRACT: An important problem in the management of the screening program for the breast cancer is take to the mammographies for the women who live in a given localities. From the Health Economics point of view, the problem is to plan, for each day of a given period, the number of the women, from each locality, that have to go to radiological office to make their mammography, such that the total cost of the transport be minimum.

KEY WORDS: dynamic transport problem, lexicographic multi-criteria transport problem, medico – economics problems

MSC 2000: 90C08, 90C29, 90C39

Inequalities and Subclasses of Analytic Functions in the Complex Unit Disc

EUGEN DRĂGHICI

Eugen Drăghici: Department of Mathematics, Faculty of Sciences, University "Lucian Blaga" of Sibiu, Str. dr. Ioan Rațiu, 550012 Sibiu, Romania
eugen.draghici@gmail.com, eugen.draghici@ulbsibiu.ro, draghici_y@yahoo.com

ABSTRACT: Let Δ be the complex unit disc and A the class of all analytic functions $f \in \Delta$, which satisfy the conditions $f(0) = f'(0) - 1 = 0$. In the paper we will find some inequalities concerning expressions of $f \in A$ and of some of its derivatives (such as: $\text{Re} \sqrt{f'(z)}$, $\text{Re}zf'(z)/f(z)$ and others, more general) in the case when f has certain geometric properties (such as: f is uniformly convex, f is quasi-uniformly starlike, f is starlike).

KEY WORDS: starlike function, convex function, uniformly starlike function, uniformly convex function, quasi-uniformly starlike function

MSC 2000: 30C45

RECEIVED: October 31, 2008
The Rate of Convergence of Positive Linear Operators in Weighted Spaces

ADRIAN HOLHOȘ

Adrian Holhoș: Technical University of Cluj-Napoca, C. Daicoviciu, nr. 15, Cluj-Napoca, Romania
adrian.holhos@math.utcluj.ro

ABSTRACT: We estimate the rate of approximation of positive linear operators for unbounded functions defined on the positive semi-axis, in terms of the modulus of continuity of the first order and the rate of convergence of the function toward infinity.

KEY WORDS: weighted spaces, rate of approximation, positive linear operators

MSC 2000: 41A25, 41A36

RECEIVED: Nov 06, 2008
Some Remarks on Several Pseudomonotonicity Notions in the Context of Variational Inequalities

DANIELA INOAN

Daniela Inoan: Technical University of Cluj-Napoca, Str. Daicoviciu 15, Cluj-Napoca, Romania
Daniela.Inoan@math.utcluj.ro

ABSTRACT: We investigate in this paper different types of generalized pseudomonotonicity for set-valued mappings. We compare some of these notions, providing several simple examples and establishing a connection between algebraic and topological pseudomonotonicity. In the second part of the paper we also prove an existence result for the solution of a class of variational inequalities involving set-valued mappings.

KEY WORDS: pseudomonotone set-valued mappings, nonlinear variational inequalities

MSC 2000: 47H04, 47J20

RECEIVED: October 31, 2008

• This paper is partially supported by the Project PN II 11018.
On the Iterates of Some Positive Linear Operators

MIRCEA IVAN

Mircea Ivan: Technical University of Cluj-Napoca
Department of Mathematics
Str. Constantin Daicoviciu nr 15
400020 Cluj-Napoca, Romania
mircea.ivan@math.utcluj.ro

ABSTRACT: We study the iterates of linear positive operators $B: C[0, 1] \rightarrow C[0, 1]$ preserving affine functions and satisfying some supplementary conditions.

KEY WORDS: Linear positive operators, iterates.

MSC 2000: 41A36

RECEIVED: Nov 1, 2008

• This paper is partially supported by the Project PN II 11018.
Connections Between the Weak Stability Boundary and the Capture Effect in the Elliptic Restricted Three Body Problem

ZOLTÁN MAKÓ AND FERENC SZENKOVITS

Zoltán Makó: Department of Mathematics and Computer Science, Faculty of Business and Humanities, Sapientia University, Miercurea Ciuc, Romania
makozoltan@sapientia.siculorum.ro
Ferenc Szenkovits: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania
fszenko@math.ubbcluj.ro

ABSTRACT: The Earth-to-Moon low energy transfers are based on the concept of weak capture at the Moon. This is a capture where the Kepler energy with respect to the Moon is nonpositive and the motion of the particle with respect to the Moon is unstable. Weak capture occurs in a special region of the phase space around the Moon called the weak stability boundary, WSB, rigorously defined by Belbruno (2004). Szenkovits et al. (2003) defined the capture effect of the planet to the captured body, as the total variation of the angle during the capture, as long as the Kepler-energy of the small body relative to the central planet is negative. In this paper the authors investigate the connections between the weak stability boundary and the capture effect. This connection is studied in the model of the elliptic restricted three-body problem, where the three bodies are the Earth, Moon and a massless particle.

KEY WORDS: weak capture, ballistic capture, weak stability boundary, capture effect

MSC 2000: 70F07, 70F15

RECEIVED: Nov 11, 2008
On a General Class of Beta Approximating Operators of First Kind

Vasile Mihesan

Vasile Mihesan: Technical University of Cluj-Napoca, Department of Mathematics, 400020 Cluj-Napoca, Romania
Vasile.Mihesan@math.utcluj.ro

ABSTRACT: We shall define a general linear transform, from which we obtain as special case the beta first kind transform. We obtain several positive linear operators as a special case of this beta first kind transform. We apply the beta first kind transform to Bernstein's operator B_n and we obtain different generalization of Stancu operator.

KEY WORDS: Euler's beta function, the beta first kind transform, positive linear operators

MSC 2000: 41A36

RECEIVED: July 1, 2008
The Stability of the Jensen Functional Equation in Non-Archimedean Fuzzy Normed Spaces

DOREL MIHET

Dorel Miheţ: West University of Timişoara, Fac. of Mathematics and Computer Science Bv. V. Parvan 4, 400223, Timişoara, Romania
mihet@math.uvt.ro

ABSTRACT: We study the stability for the Jensen functional equation in a non-Archimedean fuzzy normed space under a triangular norm weaker than T_M.

KEY WORDS: Fuzzy stability; Jensen functional equation; non-Archimedean fuzzy normed space; countable extension of a t-norm.

RECEIVED: September 20, 2008
Double Condensation of Singularities for Interpolating Operators Associated to the Sturm-Liouville Node Matrix

ALEXANDRU I. MITREA

Alexandru I. Mitrea: Technical University of Cluj-Napoca, Department of Mathematics
Str. C. Daicoviciu nr. 15
400020 Cluj-Napoca, Romania
alexandru.ioan.mitrea@math.utcluj.ro

ABSTRACT: A theorem which emphasizes the phenomenon of the double condensation of singularities with respect to a family of interpolating operators associated to a problem of Sturm-Liouville type is proved.

KEY WORDS: Sturm-Liouville node matrix, interpolating operators, double condensation of singularities, Lebesgue functions

MSC 2000: 41A05

RECEIVED: Nov 26, 2008
Differentiability with Respect to Parameter for the Solution of Kalecki’s Model

ION MARIAN OLARU

Ion Marian Olaru: Department of Mathematics, University "Lucian Blaga", of Sibiu
olaruim@yahoo.com

ABSTRACT: In this paper we study date dependence for a delay equation which models a business cycle.

MSC 2000: 34K10, 47H10

A Family of Sequences

IOAN RASA

Ioan Rasa: Technical University of Cluj-Napoca, Department of Mathematics, Gh. Baritiu street, 25, Cluj-Napoca, Romania
ioan.rasa@math.utcluj.ro

Abstract: We consider a family of sequences and - in some cases - we find the corresponding limit.

MSC 2000: 40A05

Received: Nov 10, 2008
A Class of Orthogonal Matrices of Dimension Four

DANIELA ROȘCA

Daniela Roșca: Department of Mathematics, Str. Daicoviciu 15, RO-400020 Cluj-Napoca
Daniela.Rosca@math.utcluj.ro

ABSTRACT: The problem of constructing a class of non tensor product two-dimensional orthogonal wavelets involves the construction of orthogonal matrices of a certain form. In this paper we determine all the orthogonal matrices of dimension 4, with 1/2 on the first column.

KEY WORDS: Orthogonal matrices, piecewise constant wavelets.

RECEIVED: November 1, 2008
Positive Solutions for Singular Nonlinear Second-order Boundary-value Problems Via Mixed Monotone Iterative Technique

MIRCEA DAN RUS

Mircea Dan Rus: Department of Mathematics, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca Str. Constantin Daicoviciu 15, 400020 Cluj-Napoca, Romania
rmdan@math.utcluj.ro

ABSTRACT: The existence and local uniqueness of positive solutions to a singular nonlinear second-order Dirichlet problem are established. A fixed point technique for mixed monotone operators in partially ordered Banach spaces is used for proving the existence and uniqueness and for approximating the solution. A graphical illustration of the iterative process for approximating the solution is provided.

KEY WORDS: Positive solution; singular two-point boundary-value problem; ordered Banach space; mixed monotone operator; fixed point.

MSC 2000: 34B18 (47H10, 47H07, 45G05)

RECEIVED: Nov 10, 2008
Spaces with Perturbed Metrics and Fixed Point Theorems

MARCEL-ADRIAN ŞERBAN

Marcel-Adrian Şerban: Babeş-Bolyai University, Department of Applied Mathematics, 400084 Cluj-Napoca, Romania
mserban@math.ubbcluj.ro

ABSTRACT: In this paper we present new technique to obtain fixed point for selfmaps on a metric space by altering distances between the points with a continuous control function. There are studied which properties have to satisfy a control function $\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ in order to preserve the metric axioms from a distance function $d : X \times X \rightarrow \mathbb{R}_+$ to the distance function $\varphi \circ d : X \times X \rightarrow \mathbb{R}_+$. Also, there are studied the conditions for function φ which preserve the Cauchy property from the metric space (X, d) to the L-space $(X, \varphi \circ d)$.

KEY WORDS: generalized metric space, altering distance, fixed point

MSC 2000: 54H25, 47H10

RECEIVED: November 1, 2008
A Representation and a Sequence Transformation Regarding a Generalization of Euler’s Constant

ALINA SÎNTĂMĂRIAN

Alina Sîntămărian: Department of Mathematics
Technical University of Cluj-Napoca
Str. C. Daicoviciu nr. 15
400020 Cluj-Napoca, Romania
Alina.Sintamarian@math.utcluj.ro

ABSTRACT: We consider a generalization of Euler’s constant as the limit $\gamma(a)$ of the sequence
\[
\left(\frac{1}{a} + \frac{1}{a+1} + \cdots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a} \right)_{n \in \mathbb{N}},
\]
where $a \in (0, +\infty)$. We give a representation of
\[
\gamma(a) = \left(\frac{1}{a} + \frac{1}{a+1} + \cdots + \frac{1}{a+n-1} - \ln \frac{a+n}{a} \right),
\]
for each $n \in \mathbb{N}$, and present a linear sequence transformation for some $\gamma(a)$.

KEY WORDS: Sequence, series, convergence, Euler’s constant, approximation, sequence transformation.

MSC 2000: 11Y60, 40A05, 65B05.

RECEIVED: March 17, 2008
Estimating the Parameters of a Circular Area

ȘTEFAN V. ȘTEFĂNESCU

Ștefan V. Ștefănescu: Faculty of Mathematics and Computer Science, University of Bucharest
stefanst@fmi.unibuc.ro

ABSTRACT: In this paper are analysed the statistical properties for more estimators designed to evaluate the three parameters of a circular area. A Monte Carlo simulation procedure validates the theoretical results. The proposed estimators could be used successfully to estimate an unknown area in biology or demography.

RECEIVED: September 22, 2008