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Tiberiu Coloşi — Technical University of Cluj-Napoca
Petru Dobra — Technical University of Cluj-Napoca

Ion Dumitrache — “Politehnica” University Bucureşti
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Partial Inner Product Spaces

with Application to Gabor/Wavelet Analysis

Jean-Pierre Antoine

Abstract: In this paper, we give an overview of partial inner product spaces and ope-

rators on them, illustrating the results by space families of interest in wavelet

or Gabor analysis.

1 Motivation

Modern signal processing relies on two mathematical disciplines, functional analysis (func-
tion spaces) and numerical mathematics (algorithms) [7, 14]. In this paper, we will focus on
the former and present a formalism that seems particularly well adapted, namely, that of
partial inner product spaces (PIP-spaces) [1, 2, 3, 16].
It is a fact that many function spaces that play a central role in analysis come in the form

of families, indexed by one or several parameters that characterize the behavior of functions
(smoothness, behavior at infinity, . . . ). The typical structure is a scale of Hilbert or (reflexive)
Banach spaces. Let us give two familiar examples.

(i) The Lebesgue Lp spaces on a finite interval, e.g. I = {Lp([0, 1], dx), 1 6 p 6∞}:

L∞ ⊂ . . . ⊂ Lq ⊂ Lr ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lr ⊂ Lq ⊂ . . . ⊂ L1, (1.1)

where 1 < q < r < 2 . Here Lq and Lq are dual to each other (1/q + 1/q = 1), and similarly
Lr, Lr (1/r + 1/r = 1). By the Hölder inequality, the (L2) inner product

〈f |g〉 =
∫ 1

0
f(x) g(x) dx (1.2)

is well-defined if f ∈ Lq, g ∈ Lq. However, it is not well-defined for two arbitrary functions
f, g ∈ L1. Take for instance, f(x) = g(x) = x−1/2 : f ∈ L1, but fg = f2 6∈ L1. Thus, on L1,
(1.2) defines only a partial inner product. The same result holds for any compact subset of R
instead of [0,1].

(ii) The scale of Hilbert spaces built on the powers of a positive self-adjoint operator A > 1
in a Hilbert space H0. Let Hn be D(An), the domain of An, equipped with the graph norm
‖f‖n = ‖Anf‖, f ∈ D(An), for n ∈ N or n ∈ R+, and H−n = H×n (conjugate dual):

H∞(A) :=
⋂

n

Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ H−2 . . . ⊂ H−∞(A) :=
⋃

n

Hn. (1.3)
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On the Monotonicity of Schurer-Stancu’s Polynomials

Dan Bărbosu

Abstract: Sufficient conditions for the monotonicity of the sequence
{
S̃
(α,β)
m,p f

}
of the

Schurer-Stancu polynomials are established.

1 Preliminaries

Let α and β be two real non-negative parameters satisfying the condition α ≤ β and let p
be a given non-negative integer.

The Schurer-Stancu operators S̃
(α,β)
m,p : C([0, 1 + p]) → C([0, 1]) are defined for any f ∈

C([0, 1 + p]), any m ∈ N∗ and any x ∈ [0, 1 + p] by

(
S̃(α,β)m,p f

)
(x) =

m+p∑

k=0

p̃m,k(x)f

(
k + α

m+ β

)

(1.1)

where

p̃m,k(x) =

(
m+ p

k

)

xk(1− x)m+p−k (1.2)

are the fundamental Schurer-polynomials.

The aim of this paper is to establish sufficient conditions for the monotonicity of the
sequence of polynomials (1.1). As particular cases, we get sufficient conditions for the mono-
tonicity of Schurer’s [3], Stancu’s [1] and, respectively, Bernstein’s [4] polynomials.

2 The differences between two consecutive terms of the sequence of
Schurer-Stancu polynomials

We are dealing with the difference between the consecutive terms S̃
(α,β)
m+1,pf and S̃

(α,β)
m,p f of

Schurer-Stancu polynomials (1.1).

First, we establish two auxiliary results.

Lemma 2.1 The Schurer-Stancu polynomial S̃
(α,β)
m,p f can be represented under the following
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Direct and Inverse Theorems in Generalized Lipschitz Spaces

Jorge Bustamante-González, Miguel Antonio Jiménez-Pozo
and Raúl Linares-Gracia

Abstract: For generalized Lipschitz (or Besov) spaces Bαp,q, 1 ≤ p, q ≤ ∞, α > 0,

and the trigonometric polynomials, we present direct and inverse results of

approximation in terms of a Lipschitzian modulus of continuity.

Key Words: Hölder and Lipschitz functions, Besov spaces, Jackson theorem, Bernstein theorem,

K-functionals.

MSC 2000: 26A16, 41A65, 42A10.

1 Introduction

Throughout this paper, denote by Lp2π, 1 ≤ p <∞ (respectively by L
∞
2π := C2π), the Banach spaces

of 2π−periodic p−integrable (respectively continuous) functions f with Lebesgue measure dx/2π. For
a given α > 0 we set r := [α] + 1 ∈ N. Moreover, denote by Ci, i ∈ N, positive constants which are
independent of f and may be different at each occurrence.
For every integer r > 0, real s > 0 and f ∈ Lp2π, set

Δrsf(x) := (T (s)− I)
r
f(x) :=

r∑

k=0

(−1)r−k
(
n

k

)

f(x+ ks),

where T is the translation operator. The modulus of smoothness of order r of f ∈ Lp2π, is defined as
usual by

wr(f, t)p = sup
0<s≤ t

‖Δrsf‖p .

For 1 ≤ p, q ≤ ∞, α as above and f ∈ Lp2π, introduce the function

θα(f, t)p,q :=






(
1
2π

∫ t
0

(
wr(f,s)p
sα

)q
ds
s

)1/q
if 1 ≤ q <∞, 0 < t ≤ π

sup
0< s ≤ t

wr(f,s)p
sα

if q =∞.
(1.1)

and the linear spaces
Bαp,q := {f ∈ L

p
2π : θα(f, π)p,q <∞} . (1.2)

They become Banach spaces with the norm

‖f‖p,q,α = ‖f‖p + θα(f, π)p,q

or another equivalent one. For instance, if p = q <∞, with

‖f‖p,p,α =
(
‖f‖pp + θα(f, π)

p
p,p

)1/p
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Stability results for a functional equation of quartic type

Liviu Cădariu and Viorel Radu

Abstract: By using the direct method and the fixed point alternative, two stability

theorems for the functional equation Df (x, y) := f(2x + y) + f(2x − y) −
4f(x+ y)− 4f(x− y)− 24f(x)+6f(y) = 0 are given. Our control condition
is of the Ulam-Hyers-Bourgin form, namely: ||Df (x, y)|| ≤ ϕ(x, y).

Key Words: Quartic functional equation, stability, fixed points.

1 Introduction

The generalized Hyers-Ulam-Rassias stability properties ( e.g. in the sense of [5, 2, 16, 18,
20, 31]) for many functional equations, have been extensively investigated in the last time.
Although there are known different approaches, almost all proofs used the direct method.
The interested reader is referred to the papers [1, 6, 15, 17, 22, 27, 32, 34, 35] and the books
[23, 24].
As it is observed in [7], [8], [9] [14] and [29], stability results can also be obtained from

the fixed point alternative for strictly contractive operators on suitable generalized metric
(function) spaces.
In [25] there is proven, by the direct method, the following Hyers-Ulam stability result:
Let X be a normed linear space and Y be a Banach space, on the real field. If a function

f : X → Y satisfies the inequality

‖f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)‖ ≤ δ

for all x, y ∈ X, with a constant δ ≥ 0 (independent of x and y), then there exists a unique
quartic mapping c : X → Y such that

‖f(x)− c(x)‖ ≤
δ

30
+
1

5
||f(0)||,

for all x ∈ X. The function c is given, for all x ∈ X, by

c(x) = lim
n→∞

f(2nx)

24n
.

Recall that every solution of the quartic functional equation

Df (x, y) := f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) = 0 (1.1)

is called a quartic function.
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Dianalytic Transformations of Klein Surfaces and Their

Groups of Invariants

Tuan Cao-Huu, Dorin Ghisa and Florin Muscutariu

Abstract: The study of dianalytic m − to − one transformations of Klein surfaces is
undertaken.
It is shown that for even values of m such transformations do not exist.
If m is odd and the Klein surface is the real projective plane P 2 endowed
with the natural dianalytic structure, we prove that there is a bijective
correspondence between the set of m − to − one dianalytc transformations
of P 2 and the set of m− to− one analytic transformations of the Riemann
sphere, which in turn is in a bijective correspondence with the set of m −
to− one antianalytic transformations of the Riemann sphere.
The case where these last transformations are finite analytic, respectively

antianalytic Blaschke products is particularly studied.

Key Words: Dianalytic transformations, Klein surface, Blaschke products.

1 Blaschke Products

A Möbius transformation of C of the form:
b(z, a) = z−a

1−az , |a| < 1, is called a Blaschke factor, and a product

(2) B(z) = eiθ
∏
b(z, zk)

of finite or infinitely many, not necessarily distinct, Blaschke factors is called a Blaschke
product.

When there are infinitely many Blaschke factors, the product is usually written under
the form:

(3) B(z) =
∏∞
k=1

zk
|zk|

zk−z
1−zkz

and it is known that if
∑
(1− |zk|) <∞, then the product converges uniformly on compact

subsets of the unit disk.

There is a very extensive literature on Blaschke products starting with a Blaschke
paper of 1915. In most of those papers, the infinite Blaschke products were considered as
functions defined only in the unit disk and their boundary behavior was intensively studied.
However, b(z, zk) are meromorphic function in C and B(z) =

1
B(1/z) converges also uniformly

on compact sets for |z| > 1, z 6= 1
1/zk
. No previous work has been done, to our knowledge,



Automation
Computers

Applied Mathematics
ISSN 1221–437X
Vol. 15 (2006) no. 1

pp. 69–73

Integral Equations with Mixed Type Modified Argument

Adela Chis

Abstract: A slight extension of the continuation principle established in [1] is used

to prove the existence of solutions for integral equations with mixed type

modified argument, on real the line.

1 Introduction

In this paper we present a natural application of the continuation principle established
in [1] to integral equations with mixed type modified argument.
The mixed type modified argument in our integral equation makes necessary the use of

two pseudo-metrics in the contraction condition. The same idea is used in [3]. The result in
this paper complement those in [2, 3, 4], and [5].
Now we recall the notion of contraction on a gauge space introduced by Gheorghiu [6] and

the main theorem from [1] that we will use to prove the existence at least one solutions to our
integral equation.
Let (X,P) be a guage space with the family of P = {pα}α∈A. A map F : D ⊂ X → X is

a contraction if there exists a function ϕ : A→ A and a ∈ RA+, a = {aα}α∈A such that

pα(F (x), F (y)) ≤ aαpϕ(α)(x, y) ∀α ∈ A, x, y ∈ D,

∑∞
n=1aαaϕ(α)aϕ2(α) . . . aϕn−1(α)pϕn(α)(x, y) <∞

for every α ∈ A and x, y ∈ D. Here, ϕn is the nth iteration of ϕ.
For a map H : D × [0, 1]→ X, where D ⊂ X, we will use the following notations:

Σ = {(x, λ) ∈ D × [0, 1] : H(x, λ) = x},

Our approch is based on continuation type principle (see [7]), more exactly on the following
theorem essentially established in [1].

Theorem 1.1 Let X be a set endowed with the separating gauge structures P = {pα}α∈A and
Qλ = {qλβ}β∈B for λ ∈ [0, 1]. Let D ⊂ X be P-sequentially closed, H : D × [0, 1]→ X a map,
and assume that the following conditions are satisfies:
(i) for each λ ∈ [0, 1], there exists a function ϕλ : B → B and aλ ∈ [0, 1)B, aλ = {aλβ}β∈B

such that

qλβ(H(x, λ),H(y, λ)) ≤ a
λ
βq
λ
ϕλ(β)

(x, y),
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Mixed convection flow in an inclined channel filled with a

porous medium: downflow case

Dalia Cimpean and Ioan Pop

Abstract: The problem considered is that of fully developed mixed convection flow

between inclined parallel flat plates filled with a porous medium, with an

uniform wall heat flux boundary condition. The flow is downward and the

heat flux is into the channel and therefore the natural convection opposes the

fluid flow. The solution depends on the two non-dimensional parameters,

namely P1 = (Ra/Pe) sin γ and P2 =
(
Ra/Pe2

)
cos γ . The solution is

obtained both, analytically and numerically. For certain parameter values,

fluid flow reversal regimes are observed in the vicinity of the lower and

upper walls. The numerical and analytical results for velocity profiles are

compared and they are shown to be in very good agreement. The Nusselt

number is also graphically presented for both the lower and upper plates.

Key Words: mixed convection, porous medium, analitical

MSC 2000: 76E06.

1 Introduction

Over the last few decades, a large interest on convective heat transfer, in fluid-saturated porous
media, has been observed. This interest has been stimulated by the many applications in, for exam-
ple, packed sphere beds, high performance insulation for buildings, chemical catalytic reactors, grain
storage, solid-matrix heat exchangers and geophysical problems such as frost heave. Porous media are
also of interest in relation to the underground spread of pollutants, solar power collectors, geothermal
energy systems, modelling heat and mass transfer in biological situations, such as blood flow in the
pulmonary alveolar sheet, to large scale circulation of brine in a geothermal reservoir. Existing liter-
ature for a parallel-plate channel filled with a porous medium deals mostly with the limiting cases of
free and forced convection and relatively few investigations have been reported on mixed convection
in channels filled with fluid-saturated porous media. Numerical and experimental studies of mixed
convection in vertical porous annuli that are subjected to various boundary conditions have been con-
ducted by Parang and Keyhani [12], Reda [14], Lai et al. [9], Hadim [3], Hadim and Chen [4], Chang
and Chang [2], etc. Further, an excellent review paper on this topic has been presented by Lai [8]. The
research literature, concerning convective flow in porous media, may be found in the recent research
books by Nield and Bejan [11], Ingham and Pop [5], Vafai [15], Pop and Ingham [13], Kohr and Pop
[7], Ingham et al. [6] and Bejan et al. [1].
In this study, an analytical investigation of fully developed opposing mixed convective flow in an in-
clined infinite flat channel filled with a porous medium is presented. Boundary conditions of uniform
heat flux from the walls of the channel are considered. The overall focus of the study is to obtain quan-
titative information on the effects of buoyancy on the heat transfer in mixed convection. A similar
study has been performed by Lavine [10], for a clear viscous fluid (non-porous media).
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Approximation of functions of two variables using a class of

exponential-type operators

Cristina S. Cismaşiu

Abstract: In this paper we refer to a class of exponential-type bivariate operators and

to their approximation properties.

Key Words: Approximation, central moments, exponential and probabilistic operators.

MSC 2000: 47A58, 60E05.

1 Introduction

C.P. May [6] and M.E.H. Ismail, C.P. May [5] for the first time defined and studied a class of
operators, which were named of ”exponential-type operators”, in follow way:

(Lnf)(x) =

∫ b

a

f(t)ρn(t, x)dt,

where ρn : (a, b)× (a, b)→ R, −∞ ≤ a < b ≤ ∞, n ∈ N are the functions with the properties:

(i) ρn(t, x) ≥ 0, (∀)(t, x) ∈ (a, b)× (a, b), n ∈ N

(ii)
∫ b
a
ρn(t, x)dt = 1, (∀)x ∈ (a, b)

(iii) ∂
∂x
ρn(t, x) =

n(t−x)
p(x) ρn(t, x), n ∈ N

where p(x) is an algebraical polynomials of degree 2 at the most with p(x) > 0, (∀)x ∈ (a, b) ⊆ R and
f ∈ F with F = {f : (a, b) → R|

∫ b
a
f(t)ρn(t, x)dt < ∞}. Now, we want to extend these operators to

bivariate case and we present their approximation properties in a probabilistic manner.
We consider a sequence of 2-dimensional random variables, Zk = (Xk, Yk), k ∈ N and let Wn =

(Un, Vn), n ∈ N be a sequence random vectors with the components Un respective Vn represent the
arithmetic means of the first n components Xk, k = ˉ1, n respective Yk, k = ˉ1, n, i.e.

Un =
1

n

n∑

k=1

Xk, Vn =
1

n

n∑

k=1

Yk.

We make the assumption that, for any n ∈ N the random vectors Z1, Z2, ∙ ∙ ∙ , Zn are independent
and identically distributed with mean value (x, y) = (E[Xk], E[Yk]), k ∈ N and so for each n ∈ N the
components of Wn are independent and identically distributed. If f is a real-valued function defined
and bounded on R2 such that the mean value of the random vector f(Un, Vn) exists for n ∈ N, then

Lnf(x, y) = E[f(Un, Vn)] =

∫ ∫

R2
f(u, v)dFn(u, v;x, y) (1.1)
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Approximation by Positive Linear Operators in Polynomial

Weighted Space

Alexandra Ciupa

Abstract: We consider a generalized Szász type operator, Pn, and we give theorems on

the convergence of the sequence (Pnf) to f in polynomial weighted space of

continuous functions defined on positive semi-axis.

Key Words: Szász, polynomial weight.

1 Introduction

In the paper [1] we introduced a generalized Szász type operator for the approximation of
continuous functions defined on positive semi-axis and having exponential growth at infinity.
In this paper we will study the same operator and their approximation properties in a

polynomial weighted space.
First, we have to define the operator, as in [1].
We generate the polynomials denoted by a2k by means of relation

coshu coshux =
∞∑

k=0

a2k(x)u
2k, (1.1)

where cosh z =
∞∑

k=0

z2k

(2k)!
is the hyperbolic cosine of z. It results that

a2k(x) =
(1 + x)2k + (1− x)2k

2(2k)!
.

We consider the positive linear operators

Pn(f ;x) =
1

cosh 1 coshnx

∞∑

k=0

a2k(nx)f

(
2k

n

)

, (1.2)

x ≥ 0, n ∈ N∗ = {1, 2, . . . }, and we studied the convergence of the sequence (Pnf) to f , if
the function f has an exponential growth at infinity.
In this paper, the theorems on the convergence of (Pnf) to f are obtained in the polynomial

weighted space of continuous functions defined on positive semi-axis.
We will use the weighted Korovkin-type theorems, proved by A.D. Gadzhiev [2], [3], there-

fore we need to introduce his notations.
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Properties of a Nonlinear Equation

Silvia-Otilia Corduneanu

Abstract: In this paper we discuss problems of viability and invariance for the equation

du = A(u)dt + dg, where g : [0, a] → Rn is a function of bounded variation
and A : Rn → Rn is a continuous function.

1 Introduction

In [5] there are studied some problems of viability and invariance for the equation u′ =
Ψ(u), where Ψ : Rn → Rn is a continuous function. We adapt some steps of the technique
proposed in [5] and we discuss similar problems of viability and invariance for a class of
nonlinear equations of the form

du = A(u)dt+ dg. (1.1)

Throughout in what follows, A : Rn → Rn is a continuous function and g : [0, a] → Rn is a
function of bounded variation. The meaning of equation (1.1) is given by the definition of the
solution for the Cauchy problem (1.2), where ξ ∈ Rn:






du = A(u)dt+ dg

u(0) = ξ.
(1.2)

Definition 1.1 We say that a function u ∈ L∞([0, a];Rn) is a solution for the Cauchy prob-
lem (1.2) if

u(t) = ξ +

∫ t

0
A(u(τ))dτ +

∫ t

0
dg(τ), t ∈ [0, a].

Remark 1.2 If A is dissipative, the problem (1.2) has at least a solution u ∈ L∞([0, a], Rn).

2 Problems of Viability and Invariance

Definition 2.1 The set Σ ⊂ Rn is viable with respect to equation (1.1) if for every ξ ∈ Σ,
there exist T ∈ (0, a] and at least a solution u ∈ L∞([0, T ];Rn) of the problem (1.2) such that
u : [0, T ]→ Σ.
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Gaussian Double Sequences

Iulia Costin and Gheorghe Toader

Abstract: We look after minimal conditions to assure the convergence of a Gaussian

double sequence to a common limit. We study also two methods for the

determination of the common limit.

Key Words: Gaussian compound means; invariant means; complementary means.

MSC 2000: 26E60

1 Means

Definition 1.1 A mean (on the interval J ) is defined as a function M : J2 → J, which has the
property

a ∧ b ≤M(a, b) ≤ a ∨ b, ∀a, b ∈ J

where
a ∧ b = min(a, b) and a ∨ b = max(a, b).

A mean can have additional properties.

Definition 1.2 The mean M is called: a) symmetric if

M(a, b) =M(b, a), ∀a, b ∈ J ;

b) homogeneous (of degree one) if

M(ta, tb) = t ∙M(a, b), ∀t > 0 , a, b, ta, tb ∈ J ;

c) strict at the left if
M(a, b) = a ⇒ a = b ,

strict at the right if
M(a, b) = b ⇒ a = b ,

and strict if is strict at the left and strict at the right.

Important examples of means are given by the weighted power means defined for λ ∈ (0, 1) by

Pn,λ(a, b) = [λ ∙ a
n + (1− λ) ∙ bn]1/n , n 6= 0

and the weighted geometric means

P0,λ(a, b)= Gλ(a, b) = a
λb1−λ.
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Generalized inverses of Gini means

Iulia Costin and Gheorghe Toader

Abstract: We look after the generalized inverses of weighted Gini means in the same

family of means.

Key Words: Lehmer means; power means; generalized inverses of means.

MSC 2000: 26E60

1 Means

Usually the means are given by the following

Definition 1.1 A mean is a function M : R2+ → R+, with the property

min(a, b) ≤M(a, b) ≤ max(a, b), ∀a, b > 0 .

The mean M is called symmetric if

M(a, b) =M(b, a), ∀a, b > 0.

In what follows we use weighted Gini means defined by

Br,s;λ(a, b) =

[
λ ∙ ar + (1− λ) ∙ br

λ ∙ as + (1− λ) ∙ bs

] 1
r−s

, r 6= s ,

with λ ∈ [0, 1] fixed. Weighted Lehmer means, Cr;λ = Br,r−1;λ and weighted power means Pr,λ =
Br,0;λ (r 6= 0) are also used. We can remark that P0,λ = Gλ = Br,−r;λ is the weighted geometric mean.
Also

Br,s;0= Cr;0 = Pr,0 = Π2 and Br,s;1= Cr;1 = Pr,1 = Π1 ,

where we denote by Π1 and Π2 the first respectively the second projection defined by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b ≥ 0.

Given three means M,N and P , the expression

P (M,N)(a, b) = P (M(a, b), N(a, b)), ∀a, b > 0,

defines also a mean P (M,N) . Using it we can give the following

Definition 1.2 The mean N is called P− complementary to M (or complementary to M with respect
to P ) if

P (M,N) = P.
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Nonlocal initial value problem for first order differential

equations and systems

Vasile Dincuta

Abstract: The purpose of this paper is to study the existence of solutions for a nonlocal

initial value problem for first order differential equations and systems. We

use the Leray-Schauder fixed point theorem and consider the singular case.

1 Introduction

The purpose of this paper is to study the existence of solutions of the following nonlocal
value problem for first order differential equations






x
′
(t) = f(t, x(t)) + αx(t), for a.e. t ∈ [0, 1]

x(0) +
m∑

k=1

akx(tk) = 0
(1.1)

First we will discuss the case when f : [0, 1] × R → R is a Caratheodory function, next we
will extend these results to systems of equations, in other words f : [0, 1]×Rn → Rn. Here tk
are given points with 0 ≤ t1 ≤ t2 ≤ ... ≤ tm ≤ 1 and ak are real numbers. This problem was

studied before by many authors in case of numbers ak satisfying 1 +
m∑

k=1

ak 6= 0. In [4] i give

an existence result on the case 1 +
m∑

k=1

ak = 0. Taking u(t) = x(t)e−εt, where ε > 0 is a real

number, problem (1.1) is equivalent with the following integral equation in C[0, 1] :

u(t) = T (u)(t),

where T : C[0, 1]→ C[0, 1] is given by

T (u)(t) = −b
m∑

k=1

bk
∫ tk
0 [f(s, e

εsu(s))e−εs + (α− ε)u(s)]ds+

+
∫ t
0 [f(s, e

εsu(s))e−εs + (α− ε)u(s)]ds.
(1.2)

, where
bk = ake

εtk , k = 1,m,

b =

(

1 +
m∑

k=1

bk

)−1
,

B = 1 + |b|
m∑

k=1

|bk| ,
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Analytical study of the thermohaline instability model of

Veronis type

Ioana Dragomirescu

Abstract: Most of the convection problems in linear stability theory involve high order

ordinary differential equations with constant coefficients and some homo-

geneous boundary conditions. We present two methods based on Fourier

series expansions to solve the two-point problem for a thermohaline insta-

bility model of Veronis type wherein both the boundaries are rigid.

Key Words: Thermohaline circulation, stability analysis

MSC 2000: 65L15,34K20,34K28

1 The eigenvalue problem

In the context of global warming, one of the main issues in the stability of climate change is the
fate of the thermohaline circulation (THC: i.e. the vertical density-driven circulation that results from
cooling and/or increase in salinity, that is, changes in the heat and/or salt). In certain polar regions
water, that has been subjected to extreme cooling, sinks, and flows equatorward in the thermohaline
circulation.
Not all characteristic features of the ocean are well understood. Between warm well-mixed sur-

face layer and the cold waters of the main body of the ocean is the thermocline, the zone within
which temperature decreases markedly with depth. The density of the oceans is dependent mainly
on pressure, temperature and salinity. The ocean has a unique density structure. The density field
varies significantly in all three spatial directions, with the largest variations occurring in the upper two
kilometers.
The first theoretical analysis of the deep THC has been made in an article on abyssal circulation

of Stommel (1958). In this article Stommel consider that the incoming heat flux from the sun is
stirred downward with wind and thermal convection, heats up the waters down to the thermocline and
that this subsurface source of heat must be offset by a source of cold if the ocean is not to become
continuously warmer. Some years later Veronis (1976) added the analytical details in the upper layer
of a two-layer model in which the lower layer contains Stommel’s abyssal circulation.
The following equations represent the governing equations and boundary conditions of the insta-

bility problem of Veronis’s thermohaline model of a Boussinesq liquid, wherein the boundaries are rigid
[2] 





[
(D2 − a2 −

p

σ
)(D2 − a2)

]
Ψ+RaT −RsaS = 0,

−aΨ+ (D2 − a2 − p)T = 0,
−aΨ+ [τ(D2 − a2)− p]S = 0,

(1.1)

and the boundary conditions
Ψ = DΨ = T = S = 0 at z = 0, 1. (1.2)



Automation
Computers

Applied Mathematics
ISSN 1221–437X
Vol. 15 (2006) no. 1

pp. 131–133

A general property of the divided differences

Ioan Gavrea

Abstract: We generalize a result obtained by B. Bojanov in [1].

Key Words: Divided differences, quadrature formula.
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1 Introduction

Micchelli and Revlin established in [2] the following remarkable quadrature rule

2

π

∫ 1

−1

f(x)
√
1− x2

Tn(x)dx =
1

n2n−1
[x1, . . . , xn; f

′] +R(f) (1.1)

where Tn is the polynomial of Chebyshev of degree n and xk are the zeros of Tn. The quadrature
formula (1.1) is exact for all polynomials f ∈ Π3n−1 (Πm is the set of all algebraic polynomials of
degree less than or equal to m).
In [1] B. Bojanov gave a proof of (1.1) based on the following formula:

n∑

k=1

[x1, . . . , xk−1, xk, xk+1, . . . , xn;F ] = [x1, x2, . . . , xn; f ] (1.2)

where

F (x) =

∫ x

−1
f(t)dt.

In [1] the author consider Turán’s type extensions of (1.1) and for this he proved the following
Lemma. [1] Let F be a sufficiently smooth function and f(x) := F ′(x). Then for each natural

number m and x1 < ∙ ∙ ∙ < xn,

m

n∑

k=1

[x
(m)
1 , . . . , x(m)n , xk;F ] = [x

(m)
1 , . . . , x(m)n ; f ] (1.3)

where
[x
(k1)
1 , . . . , x(km)m ; g] = [x1, . . . , x1︸ ︷︷ ︸

k1

, . . . , xm, . . . , xm︸ ︷︷ ︸
km

; g].

The aim of this note is to generalize the result from the above Lemma.

2 Main Result

Our result is given in
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Discrete Inequalities of Wirtinger’s Type in Normed Spaces

Ioan Gavrea

Abstract: Discrete versions of Wirtinger’s type inequality in normed linear spaces are

considered.

Key Words: Discrete inequality, normed space, difference of higher order.

1 Introduction

Let f be a periodic function with period 2π with

∫ 2π

0
f(x)dx = 0.

Then ∫ 2π

0
f2(x)dx ≤

∫ 2π

0
f ′2(x)dx. (1.1)

The inequality (1.1) is called Wirtinger’s inequality.

In fact, an inequality of the form (1.1) was given in 1905 by E. Almansi:

∫ b

a

f ′2(x)dx ≥

(
2π

b− a

)2 ∫ b

a

f2(x)dx, (1.2)

if f and f ′ are continuous functions such that

f(a) = f(b) and

∫ b

a

f(x)dx = 0.

There are many generalizations of the inequalities (1.1) and (1.2).

In 1969 W.J. Kim proved the following result:

Let f be a function such that f ∈ Cm[a, b] and

f (j)(a) = f (j)(b) = 0, j = 0, 1, . . . ,m− 1,

then ∫ b

a

f (m)
2
(x)dx ≥

(
b− a
2

)2m m−1∏

k=1

(2k + 1)2
∫ b

a

f2(x)

(x− a)2m(b− x)2m
dx
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Some Inequalities Related to Ky Fan Inequality

Ioan Gavrea and Octavian Mircia Gurzău

Abstract: In this paper we give some inequalities related to the well known Ky Fan

inequality.

Key Words: High order convex functions, Ky-Fan inequality.
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1 Introduction

In this paper we find some inequalities related to the well known Ky Fan inequality. Throughout,
let n be a positive integer xi ∈ (0, 12 ] and αi ≥ 0 (i = 1, . . . , n) with Σ

n
i=1αi = 1. Let

An =

n∑

i=1

αixi, Gn =

n∏

i=1

(xi)
αi , Hn =

(
n∑

i=1

αi

xi

)−1

(1.1)

be the weighted arithmetic, geometric and harmonic mean of x1, . . . , xn,

A′n =

n∑

i=1

αi (1− xi) , G
′
n =

n∏

i=1

(1− xi)
αi , H ′n =

(
n∑

i=1

αi

1− xi

)−1

(1.2)

be the weighted arithmetic, geometric mean and harmonic of 1 − x1, . . . , 1− xn.
The Ky Fan Inequality is:

Hn

H ′n
≤
Gn

G′n
≤
An

A′n
. (1.3)

H. Alzer proved in [1] an additive analog of the second inequality from above:

A′n −G
′
n ≤ An −Gn (1.4)

In this paper we give some inequalities related to the Ky Fan inequality (1.3) (for other related
inequalities see [8], [7], [2], [3], [4]).
For i ∈ N we denote by ei the function ei : R→ R., ei (x) = xi.
We use an inequality of Levinson-Popoviciu’s type, that is proved in [6], [5]:

Theorem 1.1 If A : C [a, b] → R and B : C [c, d] → R are functionals of simple form , f is a real
valued continuous function defined on a set that includes [a, b] ∪ [c, d] and b ≤ c then for all convex of
order 2 functions f :

A (f)− f

(
A (e1)

A (e0)

)

≤
A (e2)− (A (e1))

2

B (e2)− (B (e1))
2

(

B (f)− f

(
B (e1)

B (e0)

))

(1.5)
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Bifurcation in a Two Competing Species Model

Raluca-Mihaela Georgescu

Abstract: A particular case of a model describing the dynamics of two competing

species with two parameters is analyzed. Dynamics and bifurcation results

are deduced. The nature of the nonhyperbolic equilibria is found. The global

dynamic bifurcation diagram is deduced and graphically represented. A

biological interpretation is then presented. Our study concerns the equilibria

which exist from biological viewpoint.

1 Introduction

This paper deals with a particular family of planar vector fields which models the dynamics
of two populations which are in a competing relationship. Such a relationship corresponds to
a couple of the similar species of animals which compete with each other for a common food
supply.
The competition between two species is modelled by the competitive Lotka-Volterra system

{
ẋ1 = x1(r1 − a11x1 − a12x2),
ẋ2 = x2(r2 − a21x1 − a22x2),

(1.1)

where x1, x2 represent the number of the populations of the two species, r1, r2 represent
the growth rate of the species, and aij > 0, i, j = 1, 2 represents the competitive impact of
species j on the growth of species i.
The system (1.1) has been analyzed in a lot of papers in different forms. For example, in

[2], [5], [6], [7] and [8] (1.1) has the form

{
ẋ1 = r1x1(1− x1/K1 − p12x2/K1),
ẋ2 = r2x2(1− x2/K2 − p21x1/K2),

(1.2)

where K1,K2 represent the carrying capacities of every species, p12 > 0 - the action of the
second population and p21 > 0 - the action of the first population. In [5] and [8] it was
analyzed form the viewpoint of dynamical systems. In [6] and [7] the six parameters was
reduced to three. In [2] four parameters were considered as fixed and the study with respect
to the parameters p12 and p21 was carried out.
The model we study in this paper is proposed as an application by M. W. Hirsch, S. Smale

and R. L. Devaney in [4] and has the form

{
ẋ1 = x1(a− x1 − ax2),
ẋ2 = x2(b− bx1 − x2),

(1.3)
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Grid Computing: A New Approach to Solving Large Scale

Problems

Ioana Gligan, Rodica Potolea and Alin Suciu

Abstract: In the last decade, problems that were computationally unfeasible, due to
lack of computing power and storage capabilities, are becoming solvable,
through an expansion of the problem solving architectures to much larger
scales. Research projects that require such speed in execution and resource
access, that are far beyond the capabilities of a regular computer, are being
approached again, from a different point of view: their study is oriented
towards resource sharing technologies - grid and cluster computing. While
cluster computing is using very expensive multi-processor machines, grid
computing is establishing itself as the ’de facto’ standard for solving com-
putationally or data intensive problems. Grids use a large structure of com-
puting resources, connected by a network (the internet), in order to solve
large-scale computation problems.
Grid computing takes advantage of all available resources, otherwise not
used at their full extent, and introduces new parallel computing structures
that allow problems to be divided and solved at much greater speeds. It
also offers better means of sharing research results.

This paper summarizes the capabilities and benefits grid computing offers,

and will present simple test results which prove its consistency and advan-

tages over non-shared resource and computing power usage. The presented

study tests are run on the Globus based LCG2 infrastructure, on the TUCN

GridMosi computing element (controlling 5 worker nodes), and summarize

different approaches for job submission and data access.

Key Words: grid computing, large scale problems, LCG2, Globus

1 INTRODUCTION

In the last decade, problems that were computationally unfeasible, due to lack of com-
puting power and storage capabilities, are becoming solvable, through an expansion of the
problem solving architectures to much larger scales. Research projects that require such speed
in execution and resource access, that are far beyond the capabilities of a regular computer,
are being approached again, from a different point of view: their study is oriented towards
resource sharing technologies grid and cluster computing. While cluster computing is using
very expensive multi-processor machines, grid computing is establishing itself as the ’de facto’
standard for solving computationally or data intensive problems. This section presents a brief
introduction to what a grid is. The next section will explain how information and control




